load_model.py 868 B

12345678910111213141516
  1. from pymilvus import model
  2. import torch
  3. from transformers import AutoTokenizer, AutoModelForSequenceClassification
  4. device = "cuda" if torch.cuda.is_available() else "cpu"
  5. # 使用sentence transformer方式加载模型
  6. # embedding_path = r"/opt/models/multilingual-e5-large-instruct/" # 线上路径
  7. embedding_path = r"G:/work/code/models/multilingual-e5-large-instruct/" # 本地路径
  8. sentence_transformer_ef = model.dense.SentenceTransformerEmbeddingFunction(model_name=embedding_path,device=device)
  9. # rerank模型
  10. # bce_rerank_model_path = r"/opt/models/bce-reranker-base_v1" # 线上路径
  11. bce_rerank_model_path = r"G:/work/code/models/bce-reranker-base_v1" # 本地路径
  12. bce_rerank_tokenizer = AutoTokenizer.from_pretrained(bce_rerank_model_path)
  13. bce_rerank_base_model = AutoModelForSequenceClassification.from_pretrained(bce_rerank_model_path).to(device)