from pymilvus import model import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification device = "cuda" if torch.cuda.is_available() else "cpu" # 使用sentence transformer方式加载模型 # embedding_path = r"/opt/models/multilingual-e5-large-instruct/" # 线上路径 embedding_path = r"G:/work/code/models/multilingual-e5-large-instruct/" # 本地路径 sentence_transformer_ef = model.dense.SentenceTransformerEmbeddingFunction(model_name=embedding_path,device=device) # rerank模型 # bce_rerank_model_path = r"/opt/models/bce-reranker-base_v1" # 线上路径 bce_rerank_model_path = r"G:/work/code/models/bce-reranker-base_v1" # 本地路径 bce_rerank_tokenizer = AutoTokenizer.from_pretrained(bce_rerank_model_path) bce_rerank_base_model = AutoModelForSequenceClassification.from_pretrained(bce_rerank_model_path).to(device)